
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 15, 399-409 (1992) 

INTEGRAL TRANSFORM SOLUTION FOR THE 
LID-DRIVEN CAVITY FLOW PROBLEM IN 

STREAMFUNCTION-ONLY FORMULATION 

J. s. PEREZ GUERRERO AND R. M. COTTA 
Prograrna de Engenharia Mecdnica, EE/COPPE/UFRI. Universidade Federal do Rio de Janeiro, Cx. Postal 68503. 

Cidade Universitaria, Rio de Janeiro, RJ 21945, Brazil 

SUMMARY 
The basic ideas in the generalized integral transform technique are further advanced to allow for the hybrid 
numerical-analytical solution of the two-dimensional steady Navier-Stokes equations in streamfunction- 
only formulation. The classical lid-driven square cavity problem is selected for illustration of the approach. 
The corresponding biharmonic-type non-linear partial differential equation for the streamfunction is 
integral transformed in one of the co-ordinates and an infinite system of coupled non-linear ODES for the 
transformed potential results in the other independent variable. Upon truncation to an appropriate finite 
order, the ODE system is numerically solved by well-established algorithms with automatic error control 
devices. The convergence behaviour of the eigenfunction expansion is demonstrated and reference results are 
provided for typical values of Reynolds number. 
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INTRODUCTION 

The Navier-Stokes equations model some of the most important problems in the heat and fluid 
flow field and the last two decades have been dedicated to  the development of reliable and 
accurate solution procedures for this class of problems. The non-linear nature of these models 
together with the competition between convection and diffusion phenomena, represented by 
inertia and viscous effects respectively, make the solution of this set of equations still a difficult 
task even for the best known numerical techniques. Therefore several research groups continue to  
invest time and effort in the improvement of existing schemes as well as in the development of new 
approaches, in parallel with computing hardware and numerical analysis progress. These 
contributions are in general based on classical test cases that allow critical comparisons among 
the different techniques to a certain extent. A frequently employed problem that models two- 
dimensional incompressible steady flow situations is the lid-driven square cavity problem, as 
reviewed in various references.'-'' Most of the previous work is related to variations and 
enhancements of the well known finite difference'-" and finite element' '-" methods, in addition 
to  recent implementations of boundary elementlg and finite analytic' approaches. Agreement 
among all such sets of results is far from perfect and truly benchmark results are available only for 
asymptotic situations (Re = 0 and Re-+ m), making it particularly difficult to assess the relative 
merits of each individual scheme. 
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In recent years the so-called generalized integral transform technique” has gradually advanced 
towards the hybrid numerical-analytical solution of a priori non-transformable linear diffu- 
sion/convection ‘problems, based on the formal analytic ideas for the exact solution of different 
classes of transformable problems.21 More recently, this approach was quite successfully utilized 
in the automatic and accuracy-controlled solution of non-linear diffusion and convection- 
diffusion problems,20* 22- 26 including situations of moving boundaries, irregular geometries, non- 
linear equation and boundary source terms, conjugated and coupled problems, non-linear 
transport coefficients, non-linear convective terms and boundary layer equations. The next 
natural step in the establishment of this hybrid approach is the solution of the full Navier-Stokes 
equations. Therefore the present paper is aimed at advancing the integral transform method to 
handle this class of problems, here represented by the classical square cavity test case. The 
streamfunction-only formulation is preferred, since boundary conditions are explicitly provided 
and the auxiliary eigenvalue-type problem is more easily defined. The related non-linear bihar- 
monic partial differential equation is integral transformed by eliminating one of the space 
variable’s dependence and obtaining an infinite system of coupled non-linear ordinary differential 
equations for the transformed streamfunctions. For computational purposes the infinite system is 
truncated to a finite order sufficiently large to achieve the prescribed convergence tolerance. 
Boundary value problem solvers are then readily available in scientific subroutine librarie~,~’ 
with automatic error control procedures, that provide accuracy-controlled numerical results for 
the transformed potentials in the direction not eliminated through the integral transformation 
process. The desired original potential is recovered at any time, in explicit analytic form, by 
recalling the previously established inversion formula. The convergence behaviour of the pro- 
posed eigenfunction expansion is here examined for a few representative values of the governing 
parameter, the Reynolds number, at different positions within the medium. 

ANALYSIS 

We consider the two-dimensional steady incompressible laminar flow of a Newtonian fluid inside 
a square cavity, due to a continuously moving top end wall at a constant velocity, according to 
Figure 1. The related Navier-Stokes equations in vorticity transport formulation and dimen- 
sionless form are written as 

v = o  

n = 0 

= o &p/dn= 0 

Figure 1. Geometry and co-ordinate system for square cavity problem 
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where w(x, y) is the vorticity, $(x, y) is the streamfunction and Re is the Reynolds number. The 
appropriate boundary conditions are given by 

*(O, y)=O, a+(o, y)pX=o, O I ~ <  1, (k d) 

*(L y)=O, @ ( I ,  y)/dx=O, o s y <  1, (le, f )  * (x, 0) = 0, a$(x, o)py=o,  o ~ x ~ i ,  (k h) 

$(x, 1)=0, a+(x, i ) /ay= - 1, o < x < i .  (li, j 1 
All the required boundary conditions are specified in terms of the streamfunction. Therefore it 

becomes more convenient, especially when choosing the auxiliary eigenvalue-type problem, to 
rewrite (la, b) in the so-called streamfunction-only formulation. Then, substituting (1 b) into (la), 
we find 

Equation (2) together with boundary conditions (lc-j) form a non-linear biharmonic-type 
problem for which an exact solution is not attainable through the classical analytical solution 
methodologies. Here, on the basis of the ideas behind the generalized integral transform 
technique20-26 and recent developments for this class of equations,28 a hybrid 
numerical-analytical solution is proposed. The appropriate auxiliary problem is chosen as 

d4Xi(x)/dx4= p f  X,(X), 0 < x < 1, 

with boundary conditions 

Xi(0) = 0, 

Xi( 1) = 0, 

dXi(0)/dx = 0, 

dXi( l)/dx = 0, 

which is readily solved to yield the related eigenfunctionsZ8 

cosh pi x - cos pix sinh pi x - sin p i x  X,(X) = - 
coshpi-cospi sinhpi-sinpi 

and the following transcedental equation for evaluation of the eigenvalues: 

Problem (3) above enjoys the orthogonality property 

0, i#j, 
N , ,  i=j ,  

jol X,(x) Xj(x) dx = 

which allows definition of the integral transform pair 

Ib.(y)=[ol Zi(x)$(x, y)dx (transform), 

(inversion), 
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where 
fi=Xi/N,!12 

is the normalized eigenfunction and the norm is computed from 

N i = f b  X:(x)dx. 

Following the formalism in the generalized integral transform technique, (2) is now operated on 
with J A  Ri(x)dx to provide 

where the untransformed term in the V4-operator results in a coupling infinite summation with 
coefficients 

prime denoting differentiation with respect to x. 
The four untransformed terms on the right-hand side of the above equation are evaluated by 

substituting the inversion formula (6b) for JI and removing the summations from inside the 
integrals to yield 

where the coefficient matrices are given by 

All such integrals in (7b) and (9a-c) are readily obtainable in analytical form for best 
computational performance or accurately and automatically computed through adaptive quad- 
r a t ~ r e . ~ '  
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The transformed biharmonic equation now assumes the form 

for i=  1,2, . . . , 03. Similarly, the boundary conditions at y =O and 1 
through the same operator to furnish 

where 

or 

1 /;=-I 0 Xidx 

- ( 4 / p i )  tan(pi/2) for i odd, 
for i even. 
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System (10) forms an infinite set of non-linear fourth-order ordinary differential equations with 
boundary conditions at two points. For computational purposes this infinite system is truncated 
to a sufficiently large finite order N to achieve the required error criterion, which corresponds to 
truncating all the infinite summations involved at the Nth term. The formal aspects behind the 
convergence of the truncated system solution to the original infinite system solution as N+ 00 

have been considered elsewhere.20*22 From a more practical point of view it suffices to increase 
the value of N and observe the convergence behaviour. The boundary value problem can be 
handled numerically by making use of reliable solvers available in well known scientific 
subroutine librarie~,'~ which provide automatic error control schemes, to achieve a user- 
prescribed accuracy. It suffices to rewrite the truncated system of 4N equations in normal form as 
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with boundary conditions 

Once the transformed streamfunctions have been obtained from the numerical solution of 
system (1 l), the inversion formula (6b) is recalled to provide an explicit analytical solution for the 
original potential for any desired position of the integral-transformed co-ordinate. Velocity fields 
are also readily computed through the appropriate derivatives, in analytical form, of the 
streamfunction relation. 

RESULTS AND DISCUSSION 

The present procedure was implemented on a VAX8810 computer and system ( 1 1 )  was handled 
through subroutine DBVPFD of the IMSL library." A relative error target of was 
employed throughout the computations and a few comparative runs were made with tolerances 
of and The required integrals were evaluated both analytically and numerically 
through subroutine DQDAGS,27 for comparison purposes, and no sensible differences were 
encountered in either precision or computational cost. 

First, the convergence behaviour of the present solutions with prescribed accuracy was 
investigated by varying the number of terms retained in the eigenfunction expansions, N. 
Different values of Reynolds number which appear more frequently in the literature were 
considered for critical comparisons, namely Re =0, 100 and 400, with truncation orders N I 21. 
Fully converged results are therefore expected to be correct to within f 1 in the fourth significant 
digit for a relative error target of 

Figures 2(a)-2(c) show the streamfunction profiles at the centreline of the cavity, x=O.5, for 
Re=O, 100 and 400 respectively and different truncation orders, N=6,  9, 12, 15, 18 and 21. All 

0.12 I 

0.10 m 

-I P 

OOOOO Goskell et al. (18) 
* + * * *  Renson & Crochet (14) 

0 

Figure 2(a). Convergence behaviour of streamfunction distribution at cavity centreline, x =05 with Re =O 
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Figure 2(b). Same as Figure 2(a) but with Re= 100 
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Figure 2(c). Same as Figure z(a) but with R e = W  

0 

405 

three graphs indicate that the curves are practically coincident for N =  12, 15, 18 and 21, with 
decreasing convergence rates for increasing Reynolds number, as expected, since the more non- 
homogeneous the biharmonic equation becomes. Also shown are some results from previously 
reported purely numerical approaches for comparison purposes. Clearly, the early finite differ- 
ences results of Burggraf' become increasingly inaccurate for higher Re, and even more recent 
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Figure 3(a). Convergence behaviour of streamfunction distribution at x = 0 1  with Re=O 
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Figure 3(b). Same as Figure 3(a) but with Re= 100 

contributions on finite elements with quadratic  element^'^ are still reasonably inaccurate for 
moderate Reynolds numbers. The best agreement is achieved by efficient finite difference schemes 
represented by the recent works of Ghia et aL7 and Schreiber and Keller.' The results for Re = 400 
clearly indicate that difficulties were encountered in the solution reported by Nallasamy and 
Krishna Prasad.s 
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Figure 3(c). Same as Figure 3(a) but with R e = W  
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Figure qa). Convergence behaviour of streamfunction distribution at x=@9 with Re= 100 

An analysis is now performed on the behaviour of the proposed eigenfunction expansion 
solution for regions in the vicinity of the cavity walls. For instance, Figures 3(a)-3(c) show the 
streamfunction distributions along the vertical line x = 0.1, again for Re = 0, 100 and 400 and 
different truncation orders. Once again the convergence behaviour is a direct function of the 
relative magnitude of the convection terms, dictated by the value of Re. In all three cases the 
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Figure qb). Same as Figure 4(a) but with Re=400 

results are practically converged for N > 12, as in the previous situation of x =05. Figures 4(a) 
and 4(b) present the streamfunction profiles in the vicinity of the opposite side wall, along the line 
x = 0-9, for Re = 100 and 400. The case of Re = 0 is not repeated here since it is identical to Figure 
3(a) for x = 0.1 because of symmetry. For Re = 100 convergence in the full y-range is achieved for 
N > 12, while for Re=400 truncation orders over 15 were required because of the behaviour close 
to the corner with the sliding wall. 

The same direct expansions evaluated here can be employed for higher Reynolds numbers 
provided that sufficiently large truncation orders are considered, the price being paid in terms of 
increased storage and CPU time. Alternatively, one can extract information from the 'source 
function' represented by the convection terms, making the non-homogeneous part of the 
biharmonic-type equation less significant. This is accomplished by separating from the original 
potential a particular simpler solution that includes the source terms, as proposed in References 
20 and 24 for Burgers-type equations. 

Bijk  

c i j k  

Dij 

d 

N 
Ni 
Re 
U 
Xi 
x, Y 

x 

APPENDIX. NOMENCLATURE 

integral defined by (9a) 
integral defined by (9b) 
integral defined by (9c) 
integral defined by (7b) 
size of square cavity 
transformed boundary condition (10f) 
number of terms in truncated eigenfunction expansions 
normalization integral 
Reynolds number (= U d / v )  
velocity of top end wall 
eigenfunctions 
dimensionless space co-ordinates 
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Greek letters 

0 vorticity * streamfunction 
Pi eigenvalues 
$i transformed streamfunction 
V kinematic viscosity 
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